Щель в доспехах

В начале июня исполнилось ровно семь лет с того дня, как была впервые сформулирована так называемая «загадка радиуса протона» — противоречие между старыми и новыми экспериментами по определению протонного размера. За эти годы проблема не только не разрешилась, но и еще больше усугубилась, окончательно поставив теоретиков в тупик.

В июне 2010 года в местечке Лез-Уш, что во Франции, состоялась конференция, посвященная сверхточной физике простых атомных систем, где общественности впервые были представлены результаты экспериментов по уточнению зарядового радиуса протона — фундаментальной константы, характеризующей то, насколько заряд протона «размазан» в пространстве. Главным отличием нового эксперимента стало то, что он впервые проводился не на водороде, как обычно, а на экзотических мюонных атомах. Мюонным называется атом, в котором один или несколько электронов заменены на мюоны — сверхтяжелых «собратьев» электронов, обычно получаемых на ускорителях. 


Выяснилось, что новый радиус отличается от измеренного ранее на четыре процента. Это противоречие получило название «загадка радиуса протона» и вызвало беспрецедентный ажиотаж среди ученых, занимающихся атомной физикой. За семь лет проблема не только не решилась, но и еще более усугубилась недавними экспериментами, и многие заговорили о выходе к Новой физике. С точки зрения обывателя, 4 процента — не такое уж большое расхождение, поэтому, чтобы понять причину бурной реакции ученых, необходимо обратиться к истории вопроса.

Холодная война

Ни для кого не секрет, что на физику можно смотреть с позиции «холодной войны» между теорией и экспериментом. В каждой области существуют свои теории, которые предсказывают результаты тех или иных экспериментов с некоторой заявленной точностью. Экспериментаторы же, в свою очередь, стараются дотянуться до этих точностей и превзойти их, чтобы поставить перед теоретиками новые горизонты вычислений. Все это служит на благо развития наших представлений о мире вплоть до тончайших материй.

Пожалуй, самой драматичным фронтом «холодной войны» в физике стала спектроскопия атома водорода. Все началось еще в конце XIX века, когда в спектрах Солнца была обнаружена спектральная серия, названная впоследствии бальмеровской. На тот момент в физике царствовала классическая парадигма: весь мир описывался уравнениями Максвелла вперемешку с уравнениями механики, а свет понимался исключительно в волновом ключе. В мировом научном сообществе процветала уверенность, что все основные законы физики уже известны. Наиболее анекдотично этот факт иллюстрирует фраза профессора Филиппа фон Жолли, немецкого физика, ставшего эталоном недальновидности, — он отговаривал Макса Планка, одного из основоположников квантовой механики, от занятий физикой: «В этой области почти все уже открыто, и все, что остается, — заделать некоторые не очень важные пробелы».

Так что же было не так с серией Бальмера? Дело в том, что в классической электродинамике излучение производится всякий раз, когда электрические заряды испытывают ускорение либо торможение (а также движение по кругу). Вместе с тем, в электродинамике существует специальная теорема, согласно которой между электрическим зарядами может существовать только динамическое равновесие. Иначе говоря, система, состоящая из таких зарядов, может быть устойчивой (то есть не разлететься и не сколлапсировать) только тогда, когда эти заряды кружат друг вокруг друга по каким-то своим траекториям. Но в этом случае зарядам приходилось бы постоянно ускоряться и тормозить, что, согласно законам классической физики, неизбежно привело бы к излучению. Излучая, заряды теряли бы энергию и, как следствие, скорость (существует даже специальный термин «радиационное трение»). В конечном итоге это привело бы к тому, что любой классический атом, независимо от того, каково его истинное распределение зарядов, был бы обречен на радиационное истощение, и материя во Вселенной не могла бы существовать.

Но если предположить, что в силу каких-либо неведомых причин классический атом стабилен, то, согласно расчетам, спектр его излучения должен был бы представлять собой эквидистантный набор частот: он напоминал бы «гребенку», состоящую из основной частоты излучения и обертонов с частотами, кратными основной частоте. Профессиональным музыкантам и радиолюбителям хорошо знаком такой вид спектра, поскольку нюансы звука зачастую спрятаны именно в том, как себя ведут обертона. Вместе с тем серия Бальмера (а также другие серии, обнаруженные позже) никак не вписывались в эту картину: их частоты вместо равномерной «расчески» подчинялись закону обратных квадратов натуральных чисел.

Первое удовлетворительное объяснение таких спектральных закономерностей было предложено Нильсом Бором. Он долгое время бился над вопросом о том, как же объяснить эксперименты его коллеги, Эрнеста Резерфорда, который показал, что атом на самом деле состоит из маленького положительного ядра, вокруг которого кружат электроны. Сформулированная таким образом модель атома получила название планетарной из-за схожести с устройством Солнечной системы.


Чтобы согласовать эксперименты Резерфорда с фактом устойчивости атома, Бор не нашел ничего лучше, чем просто постулировать, что по неизвестным пока причинам электроны на определенных орбитах замечательно себя чувствуют и не хотят сваливаться на ядро. Но какие именно это должны быть орбиты, Бор понял только после того, как ему показали формулу, описывающую серию Бальмера. Оказалось, что электроны в атоме водорода существуют без излучения только тогда, когда их орбитальный момент равен натуральному числу в единицах постоянной Планка. Так родилась знаменитая боровская модель атома.

Несмотря на огромный успех, который имела эта модель при описании экспериментов того времени на водороде и водородоподобных атомах, ее никак нельзя назвать удовлетворительной с точки зрения фундаментальной физики. Являясь, по сути, почти полностью классической моделью (не считая пункта, связанного с дискретным орбитальным моментом), она не могла ответить на главный вопрос — почему же все-таки атомы стабильны. Более того, боровская модель не могла описать ни спектры многоэлектронных атомов, ни интенсивности линий у атомов с одним электроном. Тем не менее, успехи этой модели привнесли в мировое научное сообщество понимание того, что в основе поведения элементарных частиц лежат некие иные законы, нежели те, что описывают движение массивных тел. Теорией, которая смогла дать удовлетворительные ответы на поставленные вопросы, стала квантовая механика.

Эффект Брюса Ли

Квантовая механика создавалась как сплав идей, высказанных разными физиками, и в данный момент она формулируется в виде нескольких постулатов. Если кратко, то в ее основе лежит отказ от предоставления координате и импульсу статусов самых фундаментальных характеристик материальных тел. Вместо этого постулируется, что главной характеристикой любого физического объекта является его состояние. Каждому состоянию ставится в соответствие особый математический объект — так называемый вектор гильбертова пространства. «Одевание» физического состояния в такую математическую форму автоматически тянет за собой все алгебраические свойства, которые есть у векторов. В частности, вектора можно складывать и умножать на числа, и это позволяет описывать такие явления, как квантовая суперпозиция и квантовая запутанность, существование которых невозможно в классической картине мира. Кроме того, постулируется вероятностная природа квантового состояния с точки зрения измерения, а также постулируется то, как это состояние ведет себя со временем (уравнение Шредингера).

Сформулированная таким образом механика микроскопических тел смогла полностью объяснить все существовавшие на тот момент эксперименты в области атомной физики из первых принципов. Единственным существенным дополнением к квантовой механике стал учет релятивистских эффектов (а уравнение Шредингера, в свою очередь, было заменено на уравнение Дирака). Необходимость в этом появилась после того, как выяснилось, что линейчатые спектры имеют более сложную структуру, чем просто набор длин волн, определяемых квадратами натуральных чисел (это явление получило название «тонкая структура»). А это, опять же, стало возможным  благодаря прогрессу в технике спектроскопического эксперимента.

Однако самое интересное началось после того, как в 1947 году на конференции в Шелтер Айленде, штат Нью-Йорк, было объявлено об обнаружении мельчайшего аномального зазора в энергиях двух близлежащих состояний атома водорода, названного впоследствии лэмбовским сдвигом. Это открытие очень взбудоражило теоретиков, поскольку уже завоевавшая на тот момент надежную репутацию квантовая механика предсказывала, что этого зазора быть не должно. Решение данной загадки потребовало пересмотра наших представлений о вакууме и привело к созданию квантовой электродинамики (КЭД). Это имело большое значение для всей теоретической физики, поскольку КЭД стала отправной точкой к построению квантово-полевой модели микромира, венцом которой является Стандартная модель.

В рамках КЭД вакуум перестает быть просто пустым пространством. Теперь вакуум это некая среда, в которой постоянно на какое-то время рождаются, а затем уничтожаются частицы. Эти процессы не имеют начала и конца, они никогда не выключаются, а сами эти «вре́менные» частицы называют виртуальными. Все реальные частицы также взаимодействуют с вакуумом. В частности, электрон постоянно участвует в процессе, при котором он испускает и тут же поглощает фотон. Этот виртуальный фотон не успевает улететь далеко от электрона, поэтому вокруг любого электрона всегда существует некоторое фотонное поле. Физики даже ввели полуофициальный термин — «фотонная шуба». Как показывают расчеты, эта «шуба» привносит некоторую добавку к массе электрона. А в случае, если электрон связан в атоме, «шуба» модифицирует еще и его энергию взаимодействия с атомом. Именно этот сдвиг энергии и был обнаружен Лэмбом.

Лэмбовский сдвиг можно понять с помощью следующей аналогии. Представьте, что вы находитесь в большом зале и заняты каким-нибудь действием. Например, бьете боксерскую грушу. У вас есть определенная динамика, ваши действия следуют определенному порядку — вы находитесь в некотором состоянии с некоторой энергией. Теперь представьте, что тренер велел вам при этом еще и параллельно подбрасывать и ловить мяч. Это задание потребует от вас определенной ловкости и концентрации — наверняка ваше состояние и энергия поменяются.


Теперь представьте, что вы — самый ловкий человек на земле (например, Брюс Ли). Вы настолько хороши в своем деле, что невооруженным глазом невозможно заметить, что ваша энергия изменилась. И лишь с помощью хитрых технических ухищрений (например, высокоскоростной камеры) можно увидеть, что подбрасывание мяча все-таки влияет на вас. Примерно так же все обстоит и в атоме водорода: протон — это груша, фотон — мячик, электрон — Брюс Ли, а в роли технического приспособления выступают микроволновой излучатель и детектор, использовавшиеся в эксперименте по обнаружению лэмбовского сдвига.

С момента объяснения лэмбовского сдвига соревнование теории и эксперимента выходит на новый уровень. Дело в том, что КЭД устроена так, что мы не можем с ее помощью получить точное решение задачи на нахождение энергий атомных уровней (в отличие, например, от уравнения Дирака), но зато мы можем приблизиться к этому решению с любой точностью. Так получается потому, что точное значение энергии соответствовало бы учету бесконечного многообразия процессов с участием виртуальных частиц. Иначе говоря, формула для энергии представляет собой ряд, который необходимо просуммировать, при этом каждому члену соответствует какой-то свой процесс.

Например, излучение и поглощение одного виртуального фотона — это лишь один из таких процессов, хотя и самый существенный. Может произойти так, что электрон излучит виртуальный фотон и, не дождавшись поглощения, излучит еще один. А может и так, что излученный фотон временно распадется на электрон-позитронную пару. Каждый из этих процессов влияет на решение задачи с каким-то своим весом. Чтобы не запутаться в сложной структуре КЭД-процессов и как-то их систематизировать, Ричардом Фейнманом была придумана диаграммная техника, которая позволяет представить виртуальные частицы в виде линий разного типа, а их рождение и уничтожение — в виде точек (узлов), в которых эти линии сходятся.

Оказалось, что диаграммы, соответствующие всевозможным процессам, можно отсортировать по числу узлов. Чем больше число узлов, тем больше рождается и уничтожается виртуальных частиц и, как следствие, тем больше возможных комбинаций процессов (их число растет примерно как факториал). Кроме того, каждая новая частица привносит дополнительные интегралы в расчет. Все это приводит к тому, что каждый шаг точности увеличивает усилия, затрачиваемые на расчеты, на порядки.

Видимые линии излучения водорода в серии Бальмера. Hα — красная линия справа, имеющая длину волны 656,3 нанометра. Две самые левые линии — Hε и Hζ, лежат уже в ультрафиолетовой области спектра и имеют длины волн 397,0 и 388,9 нанометра соответственно.


Jan Homann / Wikimedia Commons

COM_SPPAGEBUILDER_NO_ITEMS_FOUND