Убийцы роботов: Электромагнитные бомбы

Главной целью в войнах будущего становятся не солдаты, а мозги противника. Электронные.

Мечта военных XX века — оружие массового поражения, поражающее только живую силу противника. На создание такого оружия — от боевых отравляющих веществ до нейтронных боеприпасов — были потрачены огромные средства, но идеального инструмента военные так и не получили. А в новом, XXI веке надобность в нем отпала и вовсе: цель войн будущего — не население, а экономика противника. Большую часть боевых задач теперь будут решать роботы — от беспилотных летательных аппаратов до автоматических бронированных машин. И если XX век можно смело назвать веком ядерного оружия, то в XXI-м востребованным будет электромагнитное, или, как его еще называют, микроволновое оружие, выжигающее компьютерный мозг противника.


Пушки и снаряды

Пожалуй, первыми электромагнитными боеприпасами были и остаются обычные ядерные заряды, одним из поражающих факторов которых является электромагнитный импульс, выводящий из строя электронику на много километров вокруг. Действие электромагнитного излучения оказалось настолько эффективным, что сразу возник вопрос — нельзя ли создать «чистое», неядерное электромагнитное оружие?

Первой приходит мысль о направленном излучении, которое распространяется примерно в 40 тысяч раз быстрее, чем летит боеголовка баллистической ракеты. Такой пушке не потребуются снаряды, у нее не будет отдачи, стрельба ее беззвучна и бездымна.

Несложные расчеты показывают: дальность поражения электроники не может превышать размер источника излучения более чем в 1000 раз, иначе излучение вызовет разряд в окружающем воздухе и вся его энергия уйдет на образование плазменного экрана. Из этого следует, что источники узких пучков электромагнитного излучения — микроволновые пушки — всегда будут проигрывать равным по габаритам артсистемам в дальности и эффективности поражения. Пучок излучения не заставишь искривиться, поэтому нельзя стрелять с закрытых позиций.

Если к этому добавить немалые габариты микроволновых пушек, то понятно, что шансов на современном поле боя у них нет. Список недостатков можно продолжить. Но это не значит, что у электромагнитного оружия нет будущего.

Другое дело, если источник ЭМИ срабатывает рядом с целью — тогда преимущество перед ударной волной или осколками очевидно. Например, радиус поражения крылатой ракеты 120-мм электромагнитным боеприпасом может составить 60 метров (та же тысяча радиусов боеприпаса), что в десять раз дальше, чем осколочно-фугасным снарядом аналогичного калибра.

Однако на данный момент в мире не существует компактных хранилищ электромагнитной энергии высокой плотности, которые можно было бы разместить внутри современных боеприпасов. Поэтому для ее генерации используется традиционное взрывчатое вещество, при детонации которого выделяется в тысячи раз больше энергии, чем может выдать в нагрузку лучший аккумулятор того же объема. Называются такие генераторы взрывомагнитными, и своим рождением они обязаны опять же ядерному оружию.


Генератор Сахарова

Для получения первичных нейтронов, «запускающих» процесс деления в ядерном боезаряде, потребовался сверхмощный источник импульса тока. Генератор А.Д. Сахарова представлял собой кольцо из взрывчатого вещества (ВВ), окружающего медную катушку. Набор подрываемых синхронно детонаторов инициировал детонацию, направленную к оси. В момент, синхронизованный с подрывом, происходил разряд конденсатора, ток которого формировал магнитное поле внутри катушки. Ударная волна огромным давлением (около миллиона атмосфер) «закорачивала» витки катушки, превращая в трубку (лайнер) и замыкая это поле внутри нее.

В проводниках поле движется медленно, поэтому за несколько микросекунд дальнейшего сжатия лайнера оно успевало проникнуть в медь лишь на десяток микрон. Замкнутый магнитный поток при этом почти не изменялся, и уменьшение площади поперечного сечения области сжатия компенсировалось эквивалентным повышением индукции поля (а значит — и возрастанием радиального тока в лайнере). При этом еще более существенно (обратно пропорционально четвертой степени радиуса) возрастали как магнитная энергия, так и магнитное противодавление на лайнер, которое замедляло сжатие вплоть до полной остановки. Вдобавок нестабильности быстро превращали внутреннюю поверхность лайнера в «звезду», лучи которой уже при уменьшении радиуса области сжатия в 3−4 раза разрезали ее, прекращая процесс. Эти и другие причины приводят к тому, что устройства, где магнитный поток сохраняется, позволяют генерировать импульсные токи в сотни миллионов ампер, но непригодны для излучения электромагнитной энергии.

Кристаллическая бомба

Во взрывомагнитных генераторах изменение магнитного поля происходит очень быстро, но все же недостаточно — за несколько микросекунд, что соответствует длине волны около километра (!). Напомним, что для эффективного излучения размер антенны должен быть сравним с длиной волны — представляете себе снаряд размером со стадион? Величина реальных зарядов в тысячи раз меньше, и чтобы конвертировать в излучение хотя бы малую часть энергии взрыва, нужны длины волн в десятки сантиметров, а значит, поле должно меняться за единицы наносекунд (10−9 с). Даже очень мощные ударные волны движутся в твердых телах со скоростями около 10 км/с, поэтому для обеспечения столь быстрого изменения радиус области, где происходит эффективное сжатие поля, должен составлять около 10−5 м — в тысячу раз меньше, чем в генераторе Сахарова!

Казалось бы, все потуги достичь радиусов сжатия в десяток микрон более чем сомнительны. Однако сделать это можно, если сжимать поле не лайнером, а ударной волной в веществе. Такое сжатие имеет важнейшую особенность: в мощной ударной волне огромное давление реализуется в основном за счет температуры, а разность плотностей вещества по обе стороны фронта невелика — примерно двукратная. Это как раз и не позволяет развиться нестабильностям, как в случае со взрывомагнитным генератором, когда разница между плотностями лайнера и воздуха внутри него составляет десятки тысяч раз. К тому же мощная ударная волна в некоторых диэлектриках (ионных кристаллах) обладает и другим интересным свойством — сразу за ее фронтом вещество приобретает высокую, почти «металлическую» проводимость. То есть можно сжимать поле не настоящей оболочкой, а виртуальной!

Итак, минимальный размер области ударного сжатия будет определяться уже не нестабильностями, а неоднородностями структуры вещества. Монокристалл — наиболее упорядоченная структура в природе. Проведенные исследования показали, что фронт ударной волны в монокристалле зеркально гладок: размеры неоднородностей составляют микроны.

Вполне реально кардинально снизить и противодавление поля, которое замедляет сжатие. Это становится возможным потому, что скорость фронта волны превышает массовую скорость вещества за фронтом. Чтобы продемонстрировать это, возьмем несколько карандашей и, оставляя зазоры, равные их толщине (что будет моделировать двукратное увеличение плотности вещества при сжатии), разложим в ряд на столе. Затем начнем двигать крайний из карандашей. Выбрав зазор, этот карандаш толкнет соседний, т"

COM_SPPAGEBUILDER_NO_ITEMS_FOUND