Откуда ученые знают, как двигались динозавры

Доисторические чудовища, топающие и скачущие на экранах кинотеатров и телевизоров, давно стали привычным зрелищем, и порой забываешь, что никто из людей никогда не видел живьем ни одного динозавра или индрикотерия. Для того чтобы понять, как двигались древние животные, у науки есть лишь их окаменевшие скелеты, часто неполные. А между тем исход шедшей сотни миллионов лет назад борьбы за преобладание на суше во многом зависел от конструкции двигательного аппарата.

Двигательный (локомоторный) аппарат состоит не только из костей, но и из мускулов, но в распоряжении изучающих окаменелости палеонтологов мягких тканей нет и «натягивать» на древние кости мясо и жилы приходится умозрительно — часто это область гипотез и жарких споров. Именно здесь находят свое применение такие разделы современной биологии, как функциональная морфология и биомеханика. Эти дисциплины обращены прежде всего на нынешнюю фауну, ведь очевидно, что разобраться в ископаемой древности можно, лишь изучив локомоторику современных животных. К примеру, знание о двигательном аппарате носорога приблизит нас к пониманию манеры передвижения трицератопса. Хотя первый был динозавром, а второй — млекопитающее, оба животных образуют один конструктивный тип — крупные, травоядные, рогатые.


На деле изучение двигательного аппарата даже существующих в природе видов — дело настолько непростое, что способ передвижения иных современных животных или, скажем, метод пережевывания ими пищи так до конца и не изучены. Есть ли движущиеся части в черепе гаттерии — реликтовой игуаны, живущей на островах Новой Зеландии? Как ни удивительно, об этом ведутся споры. И гаттерия — не единственный пример. Перенесение же методов функциональной морфологии и биомеханики на ископаемые остатки может быть выполнено лишь с известной долей гипотетичности. Впрочем, иного способа заставить «ожить» древние кости — да-да, конечно, всего лишь в воображении — не существует.

Изучение следов доисторических животных дает значительный материал для реконструкции локомоторного аппарата этих существ, манеры передвижения и даже строения скелета. Например, отсутствие при следах лап динозавра следов волочащегося хвоста привело ученых к выводу, что эти рептилии передвигались "по-птичьему", держа хвост на весу в качестве баланса.

Сухопутные рыбы

Как бы то ни было, накопленные к сегодняшнему дню знания о характере движения наземных позвоночных, принадлежащих к разным эпохам, дают ключ к пониманию драматических событий последних сотен миллионов лет, в которые живые существа, имевшие разную «конструкцию», оспаривали власть над планетой.

Гипотетическая механика

Функциональная морфология – наука о том, как строение какого-то органа или части тела соотносится с их функциями, как они приспособлены к данным функциям, и, наоборот, как эти функции могли обусловить развитие этих элементов организма. Биомеханика занимается изучением живых организмов, в частности локомоторного аппарата, строя модели на теоретической и математической основе классической механики. Модель позволяет определить¸ какому строению мускулов и костей какой тип движения соответствует.
Для того, чтобы представить себе как выглядело и как двигалось древнее животное, первым делом необходимо установить правильное сочленение костей, так как не всегда скелет достается ученым в сочлененном виде. Но даже если скелет цел, положение остатков животного как правило отражает посмертную позу, а скелет надо графически реконструировать как можно более натурально. Следующий этап – реконструкция мускулатуры конечностей и осевого скелета.  Эта работа часто проделывается палеонтологами совместо со специалистами по анатомии современных животных. По окончании реконструкции выдвигаются гипотезы о том, каким образом  двигалось животное и с какой скоростью.
Возможность проверить эти гипотезы дают окаменевшие отпечатки следов. В частности есть формулы, позволяющие по длине шага определить примерную скорость движения доисторического существа.

Наземные позвоночные, согласно принятым в современной науке взглядам, пришли на сушу из воды, ведя свою родословную от кистеперых рыб. Случилось это в палеозое, точнее, в девонском периоде (408−360 млн лет назад). Древнейшее земноводное, вышедшее на сушу, в манере движения немало унаследовало от своих водных предков. Рыба, как известно, плавает, выполняя телом волнообразные движения и отталкиваясь от воды хвостом. Точно так же девонский лабиринтодонт медленно полз по суше, «виляя» своим туловищем. Именно тогда возникла так называемая симметричная локомоция — характер движения, сохранившийся отчасти и у homo sapiens: у человека при выносе левой ноги вперед правая рука идет назад. При толчке правой ноги назад правая рука идет вперед. Эта очень примитивная походка досталась нам в наследство от далеких предков из палеозоя.


Первые земноводные стали родоначальниками всех тетраподов — четвероногих, однако строение их лап было еще тесно связано с рыбьими плавниками. Правда, в отличие от плавников, которые у рыб выполняют в основном функцию рулей, лапы земноводных получили роль основного движителя. Это был еще очень несовершенный механизм ходьбы. Конечности древних тетраподов крепились к телу латерально, то есть плечевая и бедренная кость располагались в горизонтальной плоскости (как у нынешних черепах, ящериц и саламандр). Это соответствовало латеральному положению плавников.

Жизнь вразвалочку

Кто же не помнит наши маленькие попытки схитрить во время школьных уроков физкультуры? Учитель всегда требовал, чтобы при отжимании от пола мы расставляли локти как можно шире, не так ли? Чтобы получить бóльшую нагрузку на мышцы рук и спины, разумеется. Но мы-то старались, наоборот, подвести руки под себя. Потому что так легче.

Первым земноводным и их потомкам — появившимся в каменноугольный период (360−286 млн лет назад) примитивным рептилиям- приходилось всю жизнь сдавать нормативы по отжиманию по самым строгим правилам. Ведь их латеральные конечности несли нагрузку не только на движение, но и на удержание тела на весу. Скелеты парейазавров (травоядных рептилий подкласса анапсид) поражают своей мощью и основательностью. Ширина чудовищно толстых костей конечностей часто превышала длину. К этим костям, конечно же, крепились могучие мышцы. Если еще учесть, что суставы конечностей не были до конца выработаны и местами вместо них имелась лишь «мозаика» из плоских косточек, то нетрудно себе представить, как медленно и неуклюже передвигалась эта махина на широко расставленных лапах. При ходьбе конечность отрывалась от земли, заносилась вперед, совершая круговое движение, затем вновь опускалась. Этот неэкономный способ движения делал парейазавра крайне тихоходным. Спасало его лишь одно — в палеозойскую эпоху хищных и быстрых в нынешнем понимании существ, видимо, вообще не было. Враги травоядных анапсид и истинные хозяева планеты в пермский период- хищные зверообразные рептилии из подкласса синапсид — были столь же медлительны и также ходили на латерально поставленных конечностях (примерно так ходит современная австралийская ехидна). И вот как выглядела охота времен палеозоя: за убегающей вразвалочку жертвой вальяжно шествовал хищный звероящер. Догонит? Не догонит? Эта пасторальная идиллия когда-то должна была кончиться.

Рубиджея

Рисунок реконструирует вид одного из палеозойских звероящеров (терапсид из подкласса синапсид). Эти хищники отличались от прочих рептилий функциональной дифференциацией зубов – отсюда и «звероподобность». Терапсиды считаются предками млекопитающих, а значит, и человека.

Бегом от звероящера

Наряду с травоядными анапсидами и хищными зверообразными ящерами в палеозое существовал еще одна группа — диапсиды. Правда, их физиологические различия с последними настолько разительны, что самые смелые гипотезы возводят анапсид чуть ли не непосредственно к рыбам. Например, потовые железы человека имеют явное и прямое родство со слизистой кожей земноводных, но вот у диапсид и их многочисленных потомков кожные железы практически отсутствуют.

В палеозое, пока на земле хозяйничали мохнатые звероящеры, занявшие господствующее положение благодаря внушительным размерам (при примитивной технике движения), диапсидам вырастать не давали, и все это время они оставались животными, похожими на современных ящериц. Однако долгое обитание на суше и передвижение в малом размерном классе дало им возможность отработать довольно быструю ходьбу (с латеральными изгибами тела).


В триасе, на рубеже палеозоя и мезозоя, крупные звероящеры, а заодно и животные типа парейазавров вымерли, и на авансцену истории наземных позвоночных вышли диапсиды. В мезозое они дали могучую ветвь архозавров, к которым принадлежат текодонты, динозавры, крокодилы, а также летающие ящеры. От архозавров же ведут свой род птицы.

Крокодилий галоп

Текодонты – одна из ранних ветвей архозавров  – и одновременно предки современных крокодилов. Наряду с динозаврами текодонты перешли к вертикальной постановке конечностей и к пальцехождению.  Поэтому в ходе эволюции они утратили пятый палец, так как он не соприкасался с землей и оказался не нужен. Интересно при этом, что крокодилы также не имеют пятого пальца, что является доказательством своего рода регресса в развитии этих рептилий. Дело в том, что крокодилы имеют боковую постановку конечностей и передвигаются с помощью латерального изгиба тела. Похоже, этот возврат к пресмыканию состоялся в с"

COM_SPPAGEBUILDER_NO_ITEMS_FOUND