Магнитные поля галактик: что это такое

Обычно магнитные поля ассоциируют с планетами и звездами. Но и у галактик такие поля тоже имеются.

В 1949 году американские астрономы Уильям Хилтнер и Джон Холл обнаружили слабую поляризацию звездного света в нашей Галактике. В поисках объяснений этого явления Хилтнер связал эту поляризацию с действием магнитного поля на пылевые частицы. Через год сотрудники Калтеха Леверетт Дэвис и Джесси Гринстайн оценили величину этого поля. Позднее Хилтнер обнаружил этот же эффект в галактике М31 (она же туманность Андромеды) и тем самым положил начало изучению космического магнетизма.


«Намагниченность» космического пространства определяют несколькими способами. Первый — по степени поляризации звездного света. Звездное излучение изначально поляризовано изотропно, но волны с различной поляризацией по-разному рассеиваются на частицах космической пыли, которые вращаются вокруг магнитных силовых линий: волна с линейной поляризацией, вектор которой ортогонален магнитному полю, поглощается сильнее остальных. Такой метод хорошо работает в спиральных галактиках, но не в эллиптических, где пыли очень мало.

По словам астрофизика из Принстона Анатолия Спитковского, всплески возникают вследствие сильнейшего разогрева плазменной оболочки, окружающей магнетар. Из разлома коры вырывается огненный шар, который излучает гамма-кванты и рентгеновские фотоны. Поскольку магнетар быстро вращается, эти лучи уходят в разных направлениях и могут задеть нашу планету, проявляя себя в виде гамма-всплесков. Спитковский смоделировал этот процесс на компьютере и получил серию изображений.

Величину и направление галактических магнитных полей можно также оценить путем анализа синхротронного излучения релятивистских электронов, которые закручиваются вокруг магнитных силовых линий. Такие электроны поставляются сверхновыми звездами, которые редко загораются в эллиптических галактиках. О величине этих полей можно судить и по расщеплению спектральных линий атомов водорода, обусловленному эффектом Зеемана, но в эллиптических галактиках водорода опять-таки немного.

Фотонный ветер

В феврале 2006 года японские астрофизики опубликовали модель рождения реликтовых магнитных полей. Они рассмотрели механизм, который мог генерировать эти поля в промежутке между эрой первичного нуклеосинтеза и появлением нейтральных атомов. Обычная материя тогда была горячей плазмой, состоящей из протонов с небольшой добавкой ядер дейтерия, гелия и лития, электронов и высокоэнергетичных фотонов. В этой плазме возникали потоки фотонного ветра, задувавшего из областей с высокой концентрацией квантов в зоны, где их было сравнительно меньше. Фотонные струи увлекали за собой электроны, но практически не влияли на тяжелые носители положительного заряда. Движение электронов рождало вихревые токи, которые и создали первичные магнитные поля протяженностью в миллионы световых лет. Этот механизм прекратил работать примерно через 400 тысяч лет после Большого Взрыва, когда свободные электроны объединились с ионами и перестали взаимодействовать с фотонным газом. По оценкам авторов, сила первичных полей составляла 10-18 гауссов в масштабе мегапарсеков, но на килопарсековой шкале могла оказаться в тысячи и десятки тысяч раз большей. За последующие миллиарды лет поля, рожденные этим механизмом, должны были сильно ослабеть и сейчас  вряд ли превышают 10-24 гауссов. 

Откуда берется магнетизм

Происхождение галактических магнитных полей объясняют две противоборствующие концепции. Энрико Ферми после публикации первых результатов Хилтнера выдвинул гипотезу реликтового магнетизма, возникшего вскорости после Большого взрыва. По его мнению, галактики захватили и усилили эти магнитные потоки, в результате чего возникли поля, которые мы наблюдаем сегодня. Английский астроном Фред Хойл выступил с серьезными возражениями, а американский астрофизик Юджин Паркер объяснял галактический магнетизм круговыми движениями плазмы в галактиках и их скоплениях. Позднее эту модель галактического динамо развивали различные ученые (в том числе ив СССР).


«Теории реликтовых полей подчас выглядят весьма элегантно, и некоторые даже могут оказаться верными. Однако, чтобы это выяснить, необходимо точно измерить межгалактический магнетизм, а это еще никому не удавалось, — объясняет профессор астрономии Висконсинского университета Эллен Цвейбел. — Иное дело поля внутри галактик и галактических кластеров. Их появление хорошо описывается теорией, предложенной 60 лет назад немецким астрофизиком Людвигом Бирманном. Этот механизм называется батареей Бирманна. Магнитные поля могут возникать и по-другому — скажем, при вращении плазмы, падающей на черную дыру. У природы есть немало способов усилить эту намагниченность — например, посредством сжатия космической плазмы ударными волнами. Такие процессы постоянно происходят в спиральных галактиках, что и обеспечивает стабильность их внутреннего магнетизма».

Однако попытки измерить межгалактический магнетизм могут оказаться вполне успешными. Всего через полторы недели после беседы с профессором Цвейбел сотрудник Калифорнийского технологического Шин-Ичиро Андо и его коллега из Калифорнийского университета в Лос-Анджелесе Александр Кусенко сообщили, что им, возможно, удалось зарегистрировать межгалактические магнитные поля. Эти поля должны несколько размывать гамма-лучевые портреты активных центров галактик. Андо и Кусенко утверждают, что им удалось обнаружить такие «ореолы» на совмещенных изображениях 170 активных галактических центров, полученных космическим гамма-телескопом «Ферми» (Fermi Gamma-ray Space Telescope). Они оценили силу полей, которая оказалась неожиданно большой, порядка 10−15 гауссов. Если их выводы подтвердятся, открытие будет иметь огромное значение для астрономии и космологии.

Самый мощный из гамма-всплесков магнетарного происхождения дошел до земли 27 декабря 2004 года. Всего за пять минут он выбросил в пространство без малого 10^40 Дж электромагнитной энергии (Cолнцу для этого нужно полмиллиона лет), причем примерно ее пятая часть, 1,3 х 10^39 дж, ушла в пространство за 0,1 с. Этот же магнетар (sgr 1806-20) вспыхивал в 1979, 1980 и 1996 годах.

Магнетизм и звездные роды

Галактические магнитные поля связаны и с процессами рождения звезд. Давно известно, что звезды возникают в результате гравитационного сгущения холодных и сравнительно плотных облаков космического газа. Такие облака, в каждом кубическом сантиметре которых содержится от десятка до миллиона частиц, подчас простираются на сотни световых лет. Особо плотные и обширные облака могут дать начало сотням и даже тысячам звезд. Процессы рождения звезд, по всей видимости, завершаются весьма быстро, максимум за 10−15 млн лет. Но детали этого процесса пока не ясны.

Почти все астрофизики согласны стем, что типичная звезда возникает в четыре этапа. Сначала газовое (или газопылевое) облако фрагментируется и в нем образуются сгустки вещества повышенной плотности. Затем каждый из сгустков сжимает сила тяготения, причем гравитационный коллапс начинается в центре сгустка и распространяется к периферии. Так формируются сферические протозвезды, окруженные вращающимися плоскими дисками.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND