Гелиосейсмология ограничила альтернативные теории гравитации

Физики из Чехии и Португалии с помощью гелиосейсмологии почти в тысячу раз уточнили ограничение на «пятую силу», которая возникает в альтернативных скалярно-тензорных теориях гравитации. Для этого ученые теоретически рассчитали спектр сейсмических волн, которые распространяются внутри Солнца, и сравнили его с данными группы GONG. Статья опубликована в .


Несмотря на то, что Общая теория относительности (ОТО) прекрасно описывает большинство известных гравитационных эффектов, физики продолжают искать альтернативные теории гравитации. Все эти поиски мотивированны небольшим числом эффектов, которые в рамках ОТО объяснить не удается — эффектами квантовой гравитации вблизи сингулярностей, а также существованием неуловимой темной материи и темной энергии. К сожалению, никаких экспериментальных указаний на какую-либо альтернативную теорию гравитации до сих пор нет. Поэтому задать конкретное направление поисков невозможно и в настоящее время на страницах научных журналов успешно сосуществуют десятки альтернативных теорий. Единственное, что остается экспериментаторам — это методическое прореживание «зоопарка» теорий с помощью все более точных измерений гравитационных эффектов.


Один из самых популярных кандидатов на роль альтернативной теории гравитации — это так называемые DHOST-теории (Degenerate Higher-Order Scalar-Tensor theories), которые вводят новое динамическое скалярное поле, связанное с метрикой пространства-времени. Частными примерами DHOST-теорий являются популярные теории Хорндески и Бранса — Дикке. Отличить эти теории от ОТО можно по двум важным эффектам. Во-первых, в DHOST-теориях скорость гравитационных волн заметно отличается от скорости света. Поскольку событие GW170817 показало, что в действительности это отклонение не превышает 10−15 от скорости света, широкую область параметров скалярно-тензорных теорий можно исключить.

Во-вторых, DHOST-теории предсказывают, что внутри материи действует «пятая сила», которая поправляет теорему Гаусса для гравитации. Теоретически этот эффект позволяет измерить константу связи  между скалярами и гравитацией, а затем отсеять очередную порцию теорий. К сожалению, наиболее точные измерения константы связи, полученные астрофизиками для белых карликов, оставляют для нее довольно широкое окно: −0,48 < < 0,18. По меркам альтернативных теорий гравитации, это очень слабые ограничения.

Физики Иппократис Сальтас (Ippocratis Saltas) и Илидио Лопес (Ilídio Lopes) измерили константу  с помощью гелиосейсмологии и почти в тысячу раз сузили область ее допустимых параметров. Гелиосейсмология изучает внутреннюю структуру Солнца с помощью сейсмических волн — в частности, акустических волн в объеме Солнца и гравитационных волн на его поверхности. Если помимо гравитации и уравнений гидродинамики внутри Солнца действует неизвестная «пятая сила», уравнение движения сейсмических волн немного изменится, и вместе с ним изменится скорость их движения и характерная частота. Чем больше параметр , тем заметнее будут эти изменения. Следовательно, сравнивая теоретические предсказания с измерениями гелиосейсмологов, можно установить предельные допустимые значения параметра .

Чтобы упростить теоретические расчеты, ученые воспользовались приближением Коулинга (Cowling approximation) и пренебрегли слабыми возмущениями гравитационного потенциала. Проще говоря, ученые рассматривали силу гравитации и «пятую силу» в качестве постоянного фона, который пренебрежимо слабо меняется при распространении сейсмических волн. Внутреннюю структуру Солнца ученые смоделировали с помощью программы MESA, а затем численно рассчитали спектр сейсмических волн с помощью пакета GYRE. Чтобы приближение Коулинга выполнялось, ученые рассматривали волны с достаточно большим значением числа . Найденные частоты физики сравнивали с данными группы GONG (Global Oscillation Network Group). В отсутствие «пятой силы» (то есть = 0) расхождение между теорией и реальными данными находилось на уровне 0,1 процента.

Наконец, ученые повторили расчеты при ненулевых значениях параметра , сравнили их с реальными данными и вытащили допустимую область значений, про которых отклонения теории достаточно малы. Чтобы минимизировать систематическую погрешность, связанную с неизвестными ошибками теории, ученые отбирали только такие частоты, которые в теории с  = 0 отклонялись от реальных данных не более чем на одну сигма. Объединяя результаты расчетов для всех этих мод, ученые получили, что со значимостью около двух сигма константа связи лежит в пределах от −1,8×10−3 до 1,2×10−3. Это почти в тысячу раз точнее, чем результаты предыдущих измерений. Более того, исключенная на основании этих измерений область параметров DHOST-теорий лишь частично перекрывается с областью параметров, исключенных с помощью события GW170817.

К настоящему времени физики успели проверить Общую теорию относительности практически на всех разумных масштабах. На масштабах нескольких нанометров ученые искали отклонения от закона Ньютона, рассеивая нейтроны на молекулах благородных газов; на масштабах Солнечной системы исследователи измеряли приливные силы, расстояние до Луны и гравитационное красное смещение сигнала от спутников; на масштабах галактики астрономы следили за сигналом двойных пульсаров и искажением лучей света от далеких объектов. Большинство этих измерений не нашли никаких отклонений от теории Эйнштейна, хотя некоторые из них все-таки указывали на дополнительную «пятую силу». Впрочем, результаты «подозрительных» экспериментов, скорее всего, можно интерпретировать менее революционным способом.


COM_SPPAGEBUILDER_NO_ITEMS_FOUND