Элемент неожиданности

Недавно вышедшая новость об измерении потенциала ионизации лоуренсия, 103-го элемента периодической системы породила новую волну споров о его положении в таблице Менделеева. С одной стороны он принадлежит к группе актинидов, f-элементов, но целый ряд химиков предпочитает выделять его отдельно. Почему это такой важный вопрос? И как обстоит ситуация с соседями лоуренсия по таблице, другими актинидами?


Периодический закон, а, следовательно и периодическая таблица, появились не сразу. До Менделеева было множество ошибочных теорий. Например, триады Дёберейнера предполагали объединение элементов в тройки по похожести их свойств, а таблица Мейера группировала элементы по валентностям. 


Менделеев в основу своей таблицы положил распределение элементов в порядке возрастания атомной массы. Эта идея не была принципиально новой, но предыдущие авторы сталкивались с двумя проблемами. Во-первых, атомные массы некоторых элементов были определены на тот момент неправильно, а во-вторых, отнюдь не все элементы были открыты. Менделеев попытался учесть это, поэтому в получившейся у него таблице были пустые места, предназначенные для еще не открытых элементов – германия, галлия и скандия. Идея о том, что свойства элементов должны меняться периодически (оформившаяся затем в периодический закон) позволила предсказать свойства этих, еще не открытых веществ, что и послужило важнейшим доказательством периодического закона.

С открытием строения атома в XX веке стало понятно, что порядок расположения элементов в периодической таблице определяется не атомной массой, а зарядом ядра. Кроме того, удалось выделить отдельные блоки элементов по их электронным свойствам – для того, чтобы разобраться с этим получше, стоит обратиться к строению атомов и выяснить, чем, к примеру, отличается атом водорода от атома лития или углерода.

Главная масса атома сосредоточена в ядре – можно представить его как шарик, состоящий из частиц двух видов, нейтронов и протонов. Протоны – носители положительного заряда, в то время как нейтроны зарядом не обладают. Вокруг ядра на некотором отдалении находятся электроны, заряженные отрицательно. Из курса школьной физики мы знаем, что заряды разных знаков притягиваются друг к другу – подобные силы и удерживают электроны около ядра.

Важно заметить, что электрон является элементарной частицей, и из-за неопределенности Гейзенберга определить его положение в пространстве и скорость одновременно невозможно. Поэтому для электрона не существует понятия траектории и нельзя точно определить его орбиту. Вместо этого ученые оперируют понятием орбиталь – область пространства с высокой вероятностью обнаружения электрона (скажем, 90% шанс обнаружить его в этой области).

Рассмотрим для начала самый простой атом, атом водорода. В его центре находится всего один протон. Все атомы электронейтральны, поэтому чтобы скомпенсировать заряд протона в атоме водорода есть один электрон. Форма орбитали, на которой он находится сферическая, она обозначается символом s. Следующим после водорода в таблице Менделеева идет гелий, у него в ядре уже два протона (и два нейтрона, но они нас сейчас не так важны), а значит вокруг них вращается уже два электрона, по все той же сферической орбитали. Сколько электронов может находиться на одной орбитали – довольно серьезный вопрос. В согласии с фундаментальным запретом, сформулированным Вольфгангом Паули, строго не больше двух. Это связанно с тем, что электроны относятся к такому типу частиц как фермионы – два одинаковых фермиона попросту не уживаются вместе. Два электрона на одной орбитали оказываются способными сосуществовать лишь благодаря различию в условном направлении собственного вращения – в спине.

Переходя от гелия к литию, мы получаем атом с уже тремя электронами, которым на одной орбитали «тесно» - нам требуется новая сферическая орбиталь, лежащая на большем расстоянии от ядра чем предыдущая, назовем ее «относящейся ко второму слою». Казалось бы, мы сможем представить себе такую луковичную структуру, которая сможет вместить в себя сколько угодно электронов, но природа устроена сложнее. С каждым новым слоем возникает один дополнительный вид орбиталей: на первом слое орбитали только одного типа – сферические (1s), на втором – сферические (2s) и гантелеобразные (2p), на третьем сферические (3s), гантелеобразные (3p) и похожие на объемные диагонали куба (3d) и так далее. Правильно называть такие слои энергетическими уровнями.


Главной характеристикой орбиталей, кроме их геометрической формы, является их энергия. Чем в более внешнем слое находится орбиталь, тем меньше электрон связан с ядром и тем легче его оторвать. При этом, если в более глубоком слое есть вакантные места, то электроны свободно туда проваливаются. Из-за этого заполнение орбиталей идет по порядку, соответствующему их энергиям – он отличается от послойного заполнения (см. изображения). 3d-орбиталь (d-орбиталь третьего энергетического уровня) оказывается энергетически ниже, чем 4s (s-орбиталь четвертого энергетического уровня), а 4f (f-орбиталь четвертого уровня) даже ниже чем 6s.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND